A method for the numerical integration of oscillating functions 振蕩積分的一種處理方法
After a long time evolution , the system finally reaches a stable state at which the magnetization and the equal time spin - pair correlation are periodic oscillating functions with the equal period as the external field . numerical simulation shows : when the amplitude of external filed is large , there exits a particular temperature at which the average magnetization and the average spin - pair correlation are almost unaltered with various field amplitude ( i . e . magnetic susceptibility is zero ) , and the particular temperature depends on the number of the spin states , cutting down with q increasing 由數(shù)值模擬得到:當外場幅度較大時,存在一個特殊的溫度點(我們稱之t ) ,在這個溫度點,系統(tǒng)的平均磁化強度和平均等時自旋對關(guān)聯(lián)隨外場幅度的變化幾乎保持不變(即磁化率為零) ,并且這個溫度的大小依賴于自旋態(tài)數(shù)目q的變化, q越大,這個溫度就越??;而當外場較小時,確信系統(tǒng)存在有限大小的臨界溫度